Exam. Code : 103206 Subject Code : 1233

B.A./B.Sc. 6th Semester MATHEMATICS Paper—II (Numerical Analysis)

Time Allowed—Three Hours] [Maximum Marks—50 Note :— Do any FIVE questions, selecting at least TWO questions from each section. All questions carry equal marks. Non-programmable scientific calculator is allowed.

SECTION-A

- 1. (a) Apply Bisection method in four stages to find the root of the equation $x^3 - 4x - 9 = 0$.
 - (b) Show that Newton's method is of quadratic convergence. Find the cube root of 24 by applying Newton-Raphson formula.
- 2. (a) Find the real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.

2794(2518)/CTT-1858

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

- (b) Solve the system of equations 10x 7y + 3z + 5u = 6; -6x + 8y z 4u = 5; 3x + y + 4z + 11u = 2; 5x 9y 2z + 4u = 7 by Gauss elimination method.
- 3. (a) Solve by Jacobi's iteration method, the equations 20x + 4y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.
 - (b) Using Gauss-Seidal iteration method solve the system of equations given in question 3(a).
- 4. (a) Prove that :

 $\nabla^2 y_8 = y_8 - 2y_7 + y_6; \ \delta^2 y_5 = y_6 - 2y_5 + y_4.$

(b) Find the missing values in the following table :

x	45	50	55	60	65
у	3.0	-	2.0	-	- 2.4

5. (a) Prove with the usual notations that :

(i)
$$(E^{\frac{1}{2}} + E^{\frac{1}{2}})(1 + \Delta)^{\frac{1}{2}} = 2 + \Delta$$

(ii)
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

(b) Prove that :

u

$$a_{1}x + u_{2}x^{2} + u_{3}x^{3} + \dots = \frac{x}{1-x}u_{1} + \left(\frac{x}{1-x}\right)^{2}\Delta u_{1} + \left(\frac{x}{1-x}\right)^{3}\Delta^{2}u_{1} + \dots$$

2794(2518)/CTT-1858

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

2

SECTION-B

6. (a) The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface. Find the value of y when x = 218 ft.

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	29.27

(b) Given the values :

x	5	7	11	13	17
у	150	392	1452	2366	5202

evaluate f(x), using Lagrange's interpolation formula.

7. (a) Given that :

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
у	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx} + \frac{d^2y}{dx^2}$$
 at x = 1.6

(b) Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.

2794(2518)/CTT-1858

3

(Contd.) ·

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

8. (a) Employ Taylor's method to obtain approximate values of y at x = 0.2 for the differential equation

 $\frac{dy}{dx} = 2y + 3e^x$; y(0)=0. Compare the numerical solution obtained with the exact solution.

(b) Using Runge-Kutta method of fourth order solve

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 with $y(0) = 1$ at $x = 0.2, 0.4$.

9. (a) Interpolate by means of Gauss's backward formula, the population of a town for the year 1974, given that :

Year	1939	1949	1959	1969	1979	1989
Population	12	1.5	20	27	39	52
(in thousands)	12		20			52

(b) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 by using :

- (i) Trapezoidal rule
- (ii) Simpson's 3/8 rule.

10. (a) Using Picard's method, obtain a solution upto

the fifth approximation of the equation $\frac{dy}{dx} = y + x$, such that y = 1, when x = 0. Check your answer by finding the exact particular solution.

(b) Apply Bessel's formula to obtain y_{25} , given $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.

2794(2518)/CTT-1858

6500

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab